Abstract

For years, public discourse in science education, technology, and policy-making has focused on the "leaky pipeline" problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created "microenvironments" (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students' academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women's academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women's verbal participation in group work, which often affects learning and mastery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call