Abstract

With the improvement of people's living standards and rapid economic development, the incidence of diabetes mellitus (DM) is increasing in most parts of the world. DM presents an important potential threat to human health. In the present study, a model of diabetes in female mice was established, and fasting blood glucose was detected at week 4, after which the biochemical profiles were evaluated by histopathological analysis. The success rate of modeling in the normal control (NC) group and the low/ middle/high-dose streptozotocin (STZ) group were 0, 0, 25% and 60%, respectively. In the middle-dose and high-dose STZ groups, the liver index was increased significantly compared with the NC group (p⟨0.05). The blood biochemical indicators of total cholesterol and low density lipoprotein cholesterol in three STZ injection groups were as follows: alanine aminotransferase and aspartate transaminase in middle- and high-dose STZ groups, high-density lipoprotein cholesterol and serum creatinine in the high-dose STZ group, and blood urea nitrogen in the middle-dose STZ group were significantly increased (p⟨0.05). The level of total triglycerides was lower, obviously, in the high-dose STZ group than in the NC group (p⟨0.05). The mice showed marked steatosis, green-dyed fiber tissue coloring in varying degrees, and the contour of the hepatic lobules basically disappeared in STZ injection groups. The results suggest that to establish a diabetes model for female ICR mice, the optimum dose of STZ is 100 mg/kg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.