Abstract
Interplanetary exploration will be humankind’s most ambitious expedition and the journey required to do so, is as intimidating as it is intrepid. One major obstacle for successful deep space travel is the possible negative effects of galactic cosmic radiation (GCR) exposure. Here, we investigate for the first time how combined GCR impacts long-term behavioral and cellular responses in male and female mice. We find that a single exposure to simulated GCR induces long-term cognitive and behavioral deficits only in the male cohorts. GCR exposed male animals have diminished social interaction, increased anxiety-like phenotype and impaired recognition memory. Remarkably, we find that the female cohorts did not display any cognitive or behavioral deficits after GCR exposure. Mechanistically, the maladaptive behavioral responses observed only in the male cohorts correspond with microglia activation and synaptic loss in the hippocampus, a brain region involved in the cognitive domains reported here. Furthermore, we measured reductions in AMPA expressing synaptic terminals in the hippocampus. No changes in any of the molecular markers measured here are observed in the females. Taken together these findings suggest that GCR exposure can regulate microglia activity and alter synaptic architecture, which in turn leads to a range of cognitive alterations in a sex dependent manner. These results identify sex-dependent differences in behavioral and cognitive domains revealing promising cellular and molecular intervention targets to reduce GCR-induced chronic cognitive deficits thereby boosting chances of success for humans in deep space missions such as the upcoming Mars voyage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.