Abstract

In sexually reproducing organisms, speciation involves the evolution of reproductive isolating mechanisms that decrease gene flow. Premating reproductive isolation, often the result of mate choice, is a major obstacle to gene flow between species because it acts earlier in the life cycle than other isolating barriers. While female choice is often considered the default mode in animal species, research in the butterfly genus Heliconius, a frequent subject of speciation studies, has focused on male mate choice. We studied mate choice by H. cydno females by pairing them with either conspecific males or males of the closely related species H. pachinus. Significantly more intraspecific trials than interspecific trials resulted in mating. Because male courtship rates did not differ between the species when we excluded males that never courted, we attribute this difference to female choice. Females also performed more acceptance behaviours towards conspecific males. Premating isolation between these two species thus entails both male and female mate choice, and female choice may be an important factor in the origin of Heliconius species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call