Abstract

Lamb wave-based damage detection technology shows great potential for structural integrity assessment. However, conventional damage features based damage detection methods and data-driven intelligent damage detection methods highly rely on expert knowledge and sufficient labeled data for training, for which collecting is usually expensive and time-consuming. Therefore, this paper proposes an automated fatigue crack detection method using Lamb wave based on finite element method (FEM) and adversarial domain adaptation. FEM-simulation was used to obtain simulated response signals under various conditions to solve the problem of the insufficient labeled data in practice. Due to the distribution discrepancy between simulated signals and experimental signals, the detection performance of classifier just trained with simulated signals will drop sharply on the experimental signals. Then, Domain-adversarial neural network (DANN) with maximum mean discrepancy (MMD) was used to achieve discriminative and domain-invariant feature extraction between simulation source domain and experiment target domain, and the unlabeled experimental signals samples will be accurately classified. The proposed method is validated by fatigue tests on center-hole metal specimens. The results show that the proposed method presents superior detection ability compared to other methods and can be used as an effective tool for cross-domain damage detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.