Abstract

This paper develops a numerical micromechanics fracture model based on the crack band methodology for the prediction of damage in continuous fiber ceramic matrix composites (CMCs). The energy based crack band formulation offers mesh objective predictions in finite element simulations. Detailed finite element models of CMCs are created based on the actual microstructure and compared with randomly created representative volume elements (RVE). The influence of geometrical inhomogeneities, such as fiber clustering and variations of the fiber coating thickness, on the stress-strain response and the crack development are investigated. Furthermore, FEM models of multi-layer cross-ply laminates are created including thousands of explicitly modeled fibers and fiber coatings. Crack density predictions are compared with well established analytical models by Laws and Dvorak [1] and Nairn [2]. An eight layer FEM model is used to predict damage propagation within each layer. The Numerical prediction of the stress-strain response is compared with experimental results of smooth bar tensile coupons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.