Abstract

This present research work deals with the design by finite element method (FEM) of the dies required for the isothermal forging of a Francis turbine blade taking into account that the starting material has been previously nanostructured through severe plastic deformation by equal channel angular extrusion. This nanostructured material possesses improved mechanical properties and hardness, better forgeability, and, under specific conditions, a superplastic behavior. Once this material is obtained, its flow rule has been determined through compression tests at different temperature values along with its subsequent fitting with artificial neural networks. Later on, these rules will be employed in the FEM simulations included in this present study. Furthermore, the results of the processing of these materials are shown comparing the properties of the mechanical components after their isothermal forging at different temperature values both with predeformed and non-predeformed material. This work is at the cutting-edge of technology because there are only a few technical papers about forging applications of nanostructured material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.