Abstract

Scaffolds have been produced by supercritical CO2 drying of Poly-L-Lactid Acid (PLLA) gels loaded with micrometric fructose particles used as porogens. These structures show a microporous architecture generated by the voids left in the solid material by porogen leaching, while they maintain the nanostructure of the gel, consisting of a network of nanofilaments. These scaffolds have also been loaded with Hydroxyapatite (HA) nanoparticles, from 10 to 50% w/w with respect to the polymer, to improve the mechanical properties of the PLLA structure.Based on miscroscopic and mechanical considerations, we propose a parametric Finite Element Method (FEM) model of PLLA–HA composites that describes the microporous structure as a close-packing of equal spheres and the nanoscale structure as a space frame of isotropic curved fibers. The effect of HA on the mechanical properties of the scaffolds has been modeled on the basis of SEM images and by taking into consideration the formation of concentric cylinders of HA nanoparticles around PLLA nanofibers. Modeling analysis confirms that mechanical properties of these scaffolds depend on nanofibrous network connections and that bending is the major factor causing deformation of the network. The FEM model also takes into account the formation of HA multi-layer coating on some areas in the nanofiber network and its increase in thickness with HA percentage. The Young modulus tends to a plateau for HA percentages larger than 30% w/w and when the coverage of the nanofibers produced by HA nanoparticles reaches a loaded surface index of 0.14 in the FEM model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call