Abstract

The paper deals with problem of construction for Weightlifting in CrossFit from point of view of material parameters. The specific structure has to withstand repeated impact loads. Therefore it is also necessary to deal with stress-strain states. Because of behavior of impact loading and elastomers used in FEM computational model, explicit integration scheme and material constitutive models have to be included. To use constitutive models, material parameters have to be well known. In this paper, the 2-parameter Mooney-Rivlin model is used. That is the reason, why this article is focused on obtaining material parameters of elastomers for FEM computational modeling based on their hardness. Mooney-Rivlin parameters can be determined on the basis of the Shore A hardness. There are exist equations which can be used conversion of the mentioned hardness to material parameters of elastomers. The procedure is such that the Shore A hardness is converted to the elastic or shear modulus and then Mooney-Rivlin material parameters are determined from the modulus. But these equations can lead to different results for the same hardness. In this paper, these results are comparison. For create a 3D model the SolidWorks software is used and for FEM analyses well-known the ANSYS Workbench software is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.