Abstract
The non-dissociative and the dissociative adsorption of nitrous oxide and the adsorption of oxygen on silver have been studied by field-emission microscopy using whiskers and epitaxial layers on tungsten tips and volumetrically, with the aid of ultraclean thin films. At 77 K non-dissociative adsorption of nitrous oxide takes place, leading to a decrease in work function. At 273–473 K slow face-specific dissociative adsorption of nitrous oxide occurs, which causes an increase in work function and proceeds with an activation energy at low coverages of 29 ± 5 kJ mol −1. The adsorption of oxygen in this temperature range is more than 10 4 times faster and for low coverages work function-oxygen exposure plots yield an activation energy of 16 ± 3 kJ mol −1. The coverages reached above 1 Pa are constant and occur in the ratio 1:2:3.5 at 296, 373 and 473 K, the corresponding increases in work function being approximately 0.4, 0.6 and 0.8 eV. The oxygen adsorbed at low temperatures (≈ 273 K) is bound more loosely than that adsorbed at higher temperatures, which is shown by the partial desorption upon evacuation to low pressures (10 −8 Pa) at 273 K and application of high electric fields (5 V/nm). The adsorbate formed in the presence of oxygen at 273 K can further be distinguished from the adsorbates formed in the presence of nitrous oxide at 273 K and oxygen at 473 K (both probably O = ads) by the higher reactivity towards hydrogen reduction and the easier thermal desorption, indicating that at 273 K molecular adsorption (O − 2, ads) occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.