Abstract

As significant theory evidence in thick plate or heavy gauge plate hot rolling, the deformation behavior at the thickness direction was investigated. In the present work, multi and single pass rolling processes were studied by 2D explicit dynamic finite element method (FEM) simulation and verified by laboratory hot rolling experiment. The value of stress and strain could be obtained in any passes and time in the hot rolling process accurately. The verified FEM model could be used as an important reference factor for other hot rolling processes. Strain and stress distribution data was obtained from four portions at the thickness direction. A cooper rod was knocked into the hot rolling specimen, as a reference substance to observe the deformation after the hot rolling experiment. In the multi-pass simulation with nearly 10% per-pass reduction, the core metal yield when the total reduction was 40%. The same performance could be achieved when the first pass reduction larger than 20%. However, extremely first pass reduction would cause an instability deformation result in a confusion of microstructure. Finally, the relation between the reduction and the number of rolling passes was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call