Abstract

In this contribution, we analyze the properties of two-phase magneto-electric (ME) composites. Such ME composite materials have raised scientific attention in the last decades due to many possible applications in a wide range of technical devices. Since the effective magneto-electric properties significantly depend on the microscopic morphology, we investigate in more detail the changes in the in-plane polarization due to an applied magnetic field. It was shown in previous works that it is possible to grow vertically aligned nanopillars of magnetostrictive cobalt ferrite in a piezoelectric barium titanate matrix by pulsed laser deposition. Based on x-ray linear dichroism, the displacements of titanate ions in the matrix material can be measured due to an applied magnetic field near the boundary of the interface between the matrix and the nanopillars. Here, we focus on (1–3) fiber-induced composites, based on previous experiments, where cobalt ferrite nanopillars are embedded in a barium titanate matrix. In the numerical simulations, we adjusted the boundary value problem to match the experimental setup and compare the results with previously made assumptions of the in-plane polarizations. A further focus is taken on the deformation behavior of the nanopillar over its whole height. Such considerations validate the assumption of the distortion of the nanopillars under an external magnetic field. Furthermore, we analyze the resulting magneto-electric coupling coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call