Abstract

In order to ensure rifle barrels have the features of high strength, durability, and light weight, the strength analysis of the barrels under hot temperatures and pressures is very important in the design. A finite element model incorporating the plastic deformation of a typical 0.50 caliber rifle barrel is constructed to determine the stresses caused by the mechanical loads and plastic deformation. According to the simulation results, the finite element analysis is proved to be a power analysis tool for future failure analysis of firearm barrels. The method provides a power tool for analysis of firearm barrels. The projectile was accelerated to 941.7 m/s in 1.430 ms with a pressure profile that reached a maximum of 469.3 MPa. Stresses as large as 1,410 MPa along the interior of the barrel were found where the leading edge of the projectile slides along the bore, but the largest stresses at the exterior of the barrel were found where the barrel wall is thinnest near the chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call