Abstract

The distribution of temperature in sand soils was measured through laboratory tests, and the temperature influence on friction resistances at the concrete-soil interface was analyzed. Based on the results of laboratory tests, the finite element model was established using the sequential thermal coupling method. The influences of temperature on the bearing characteristics of energy pile were analyzed. The analysis results show that the cyclic temperature will cause additional displacement along pile depth. It is pointed out that if applied vertical loads at energy pile head exceed the value from which nonlinear settlements would be initiated, irrecoverable additional settlement will occur at pile head. Based on the analysis results, a simplified approach was proposed to estimate the zero point of additional displacement along pile shaft and the additional axial pile force. The comparison between the calculated results obtained by the proposed method and that of ABAQUS on single energy pile was given to verify the accuracy of the proposed method. It is shown that reasonable predictions can be obtained without expensive and time-consuming analyses by the proposed method in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.