Abstract

Bolted joints with gaskets such as non-circular flange connections have been widely used in mechanical structures, nuclear and chemical industry, and so on. They are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the non-circular flange connections with gaskets, it is important to evaluate the sealing performance of the non-circular flange connections with gaskets subjected to internal pressure. An important issue is how to evaluate the sealing performance in the box-shape bolted flange connections by using the contact gasket stress distributions at the interfaces, how to reduce a number of bolt and nuts, that is, how to enlarge the bolt pitch, and how to determine the initial clamping bolt force (preload) by using the new gasket constants. In this paper, the stresses of box-shape flange connection with gaskets subjected to an internal pressure are analyzed using the finite element method (FEM), taking account a hysteresis in the stress-strain curves of the gasket. The contact gasket stress distributions when the internal pressure is applied to the connection are analyzed. The leakage tests were conducted using an actual box-shape flange connection with a gasket Using the contact gasket stress distributions at the interfaces under an internal pressure (Helium gas was used) and the amount of the leakage measured in the experiment, the sealing performances are evaluated experimentally and theoretically by changing the bolt pitch in the connections. Discussion is made on the effect of the bolt pitch on the sealing performance in the above connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.