Abstract

A novel organic–inorganic hybrid catalyst [MCM-41-FeIII(salim)] was synthesized by covalently anchoring FeIII(salim) complex into the pore channels of MCM-41. The material was synthesized by the co-condensation of tetraethyl orthosilicate (TEOS) and the precursor of salicylaldehyde modified with 3-aminopropyl triethoxysilane in the presence of cetyltrimethyl ammonium bromide (CTAB). The Fe(III)-salicylideneimine MCM-41 mesoporous silica was generated (in situ) by taking MCM-41-salimH (I) and FeCl3 in ethanol solution. The immobilization of the complex on the functionalized silica was confirmed by small angle X-ray diffraction (XRD), N2 adsorption–desorption, electron paramagnetic resonance (EPR), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance UV–vis spectroscopy. Solid state CP-MAS NMR spectroscopy of 29Si (29Si CP-MAS NMR) showed a highly condensed siloxane network. Catalytic activity of the supported catalyst was examined by the oxidation of cyclohexane. Cyclohexane was successfully oxidized in good conversion (68%) to cyclohexanone, as a major product with 72% selectivity using tert. butylhydroperoxide as oxidant and acetonitrile as solvent. The catalysts can be reused up to three cycles without losing much of its activity. Fe(III)-salicylideneimine immobilized MCM-41 hybrid mesoporous silica was prepared by covalent anchoring of schiffbase complex to MCM-41 host and used for liquid phase oxidation of cyclohexane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.