Abstract

With the discovery of ferroelectricity in HfO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> based thin films and the co-integration of ferroelectric field effect transistors (FeFET) into standard high-k metal gate (HKMG) CMOS platforms, the FeFET has emerged from a theoretical dream to an applicable reality. This paper summarizes the status of GLOBALFOUNDRIES FeFET technology and some of its potential applications. We show excellent 0.12µm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> SRAM yields of our mature 28nm CMOS platform, with co-integrated FeFETs, exhibiting a solid memory window of 1.4V. In contrast to conventional embedded memory cells, the FeFET can be integrated like a regular 26Å EOT transistor, exhibiting two reversibly programmable VT states, while offering full design flexibility. We show state of the art across wafer VT variability of the programmed and erased states of the FeFETs and discuss its layout-dependence. Embedded size-competitive FeFETs already allow solid separation of the memory states, approaching a mature 6Sigma distribution. Reasonable endurance and stable data retention are demonstrated. Moreover, an outlook of this technology beyond the von Neumann computing will be discussed, considering some of the various applications of this new, versatile device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.