Abstract

Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1,000 °C (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g−1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, comparable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2O3@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open circuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW·cm−2 at a current density of 220 mA·cm−2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW·cm−2 at a current density of 220 mA·cm−2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.