Abstract

We present and evaluate the concept of FeelMusic and evaluate an implementation of it. It is an augmentation of music through the haptic translation of core musical elements. Music and touch are intrinsic modes of affective communication that are physically sensed. By projecting musical features such as rhythm and melody into the haptic domain, we can explore and enrich this embodied sensation; hence, we investigated audio-tactile mappings that successfully render emotive qualities. We began by investigating the affective qualities of vibrotactile stimuli through a psychophysical study with 20 participants using the circumplex model of affect. We found positive correlations between vibration frequency and arousal across participants, but correlations with valence were specific to the individual. We then developed novel FeelMusic mappings by translating key features of music samples and implementing them with “Pump-and-Vibe”, a wearable interface utilising fluidic actuation and vibration to generate dynamic haptic sensations. We conducted a preliminary investigation to evaluate the FeelMusic mappings by gathering 20 participants’ responses to the musical, tactile and combined stimuli, using valence ratings and descriptive words from Hevner’s adjective circle to measure affect. These mappings, and new tactile compositions, validated that FeelMusic interfaces have the potential to enrich musical experiences and be a means of affective communication in their own right. FeelMusic is a tangible realisation of the expression “feel the music”, enriching our musical experiences.

Highlights

  • Music and touch are profound modes of emotive communication embedded in human cultures across the globe [1,2,3]

  • The mean 95% confidence interval was 0.92 in the pleasantness dimension and 0.76 in the intensity dimension, an area close to one quadrant of the circumplex space. While this is a high variance in responses, the variance was high across participants and not for individuals; the six repeated stimuli had a significantly reduced standard deviation per participant compared to their responses to all stimuli, which is evidence that participants were able to differentiate between stimuli and had consistent affective responses

  • Our results show that emotive responses are highly varied across individuals, but there are correlations between features such as frequency, amplitude and energy of stimuli and affective response that are universal

Read more

Summary

Introduction

Music and touch are profound modes of emotive communication embedded in human cultures across the globe [1,2,3]. There is evidence to show that people are capable of matching audible frequencies to those presented as haptic vibrations [11] and that frequency perception of both auditory and tactile stimulation occurs in the same region of the sensory cortex [12].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call