Abstract

The use of plastic materials in a circular way requires a technology that can treat any plastic waste and produce the same quality of product as the original. Cable plastic residue from metal recycling of electric wires is composed of cross-linked polyethene (XLPE) and PVC, which is a mixture that cannot be mechanically recycled today. Through thermochemical processes, polymer chains are broken into syngas and monomers, which can be further used in the chemical industry. However, feedstock recycling of such a mixture (XLPE, PVC) has been scarcely studied on an industrial scale. Here, the steam cracking of cable plastic was studied in an industrial fluidised bed, aiming to convert cable plastics into valuable products. Two process temperatures were tested: 730 °C and 800 °C. The results show that the products consist of 27–31 wt% ethylene and propylene, 5–16% wt.% other linear hydrocarbons, and more than 10 wt% benzene. Therefore, 40%–60% of the products are high-value chemicals that could be recovered via steam cracking of cable plastic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call