Abstract

In CNC machining, an optimal process plan is needed for higher productivity and machining performance. This paper proposes a mechanistic cutting force model to perform feedrate scheduling that is useful in process planning for indexable end milling. Indexable end mills, which consist of inserts and a cutter body, have been widely used in the roughing of parts in the mold industry. The geometry and distribution of inserts compose a discontinuous cutting edge on the cutter body, and tool geometry of indexable end mill varies with axial position due to the geometry and distribution of inserts. Thus, an algorithm that calculates tool geometry data at an arbitrary axial position was developed. The developed cutting force model uses cutting-condition-independent cutting force coefficients and considers run out, cutter deflection, geometry variation and size effect for accurate cutting force prediction. Through feedrate scheduling, NC code is optimized to regulate cutting forces at given reference force. Experiments with general NC codes show the effectiveness of feedrate scheduling in process planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call