Abstract

AbstractFeeding stem–leaf–pod explants with d-chiro-inositol and d-pinitol was used as a method to modify α-d-galactosides in developing pea (Pisum sativum) seeds. Four genotypes differing in the composition of raffinose, stachyose and verbascose (raffinose family oligosaccharides or RFOs) in seeds – high RFOs (cv. Tiny), low RFOs (SZD175) and low verbascose (cv. Hubal and cv. Wt 506) – were studied. Although seeds of all examined pea lines were able to take up both d-chiro-inositol and d-pinitol, only d-chiro-inositol was effectively converted into its galactosides: mainly fagopyritol B1 (O-α-d-galactopyranosyl-(1 → 2)-d-chiro-inositol) and fagopyritol B2 (O-α-d-galactopyranosyl-(1 → 6)-O-α-d-galactopyranosyl-(1 → 2)-d-chiro-inositol). In seeds of pea lines naturally containing low levels of verbascose (cv. Hubal) and low RFOs (SZD175), the enhanced accumulation of fagopyritols depressed the RFO level by c. 64 and 20%, respectively. Moreover, in both genotypes, about 25 and 30% of total galactose bound in α-d-galactosides occurred in fagopyritols. d-Pinitol present in the pea seeds was converted into monogalactosides, but their accumulation was several-fold lower than that of fagopyritols and did not significantly influence the accumulation of RFOs. Pea seeds with the composition of soluble carbohydrates modified by feeding with either of the cyclitols were able to complete germination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.