Abstract

BackgroundMosquito feeding behaviour determines the degree of vector–host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission.Methodology/Principal FindingsWe identified the origin of blood meals in five mosquito species from three different wetlands in SW Spain. All mosquito species analysed fed with different frequencies on birds, mammals and reptiles. Both ‘mosquito species’ and ‘locality’ explained a similar amount of variance in the occurrence of avian blood meals. However, ‘season of year’ was the main factor explaining the presence of human blood meals. The differences in diet resulted in a marked spatial heterogeneity in the estimated WNV transmission risk. Culex perexiguus, Cx. modestus and Cx. pipiens were the main mosquito species involved in WNV enzootic circulation since they feed mainly on birds, were abundant in a number of localities and had high vector competence. Cx. perexiguus may also be important for WNV transmission to horses, as are Cx. pipiens and Cx. theileri in transmission to humans. Estimates of the WNV transmission risk based on mosquito diet, abundance and vector competence matched the results of previous WNV monitoring programs in the area. Our sensitivity analyses suggested that mosquito diet, followed by mosquito abundance and vector competence, are all relevant factors in understanding virus amplification and transmission risk in the studied wild ecosystems. At some of the studied localities, the risk of enzootic circulation of WNV was relatively high, even if the risk of transmission to humans and horses was less.Conclusions/SignificanceOur results describe for first time the role of five WNV candidate vectors in SW Spain. Interspecific and local differences in mosquito diet composition has an important effect on the potential transmission risk of WNV to birds, horses and humans.

Highlights

  • West Nile virus (WNV) is a zoonotic mosquito-transmitted arbovirus whose enzootic cycle is maintained by birds and mosquitoes [1]

  • Mosquito and Host Identification We identified ten mosquito species from a total of 221,819 samples, of which only five (Culex modestus, Cx. perexiguus, Cx. pipiens, Cx. theileri and Ochlerotatus caspius) provided enough blood meals to perform statistical analyses

  • Our results showed that the studied mosquito species fed on a wide range of vertebrates and all of them can be considered as generalists, as has been reported in other regions of the world [31], [42]

Read more

Summary

Introduction

West Nile virus (WNV) is a zoonotic mosquito-transmitted arbovirus whose enzootic cycle is maintained by birds and mosquitoes [1]. The use of serological and molecular methods has greatly improved our capacity for describing feeding patterns of haematophagous arthropods in the wild [6], [7]. These approaches have allowed us to detect blood from a large variety of vertebrates in mosquitoes and to identify important differences in diet between seasons and/or localities [8], [9]. Mosquito feeding behaviour determines the degree of vector–host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour interacts with other biotic and abiotic factors that affect virus amplification and transmission

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call