Abstract

Documenting variation in organismal traits is essential to understanding the ecology of natural populations. We relied on stomach contents of preserved specimens and literature records to assess ontogenetic, intersexual, temporal, and geographic variations in the feeding ecology of the North American Great Basin Rattlesnake ( Crotalus lutosus Klauber, 1930). Snakes preyed mainly on rodents, occasionally on lizards, and less frequently on birds; squamate eggs and frogs were rarely eaten. There was a positive relationship between predator and prey size. The best predictors of this relationship were prey diameter as a function of snake body length and head size, underscoring the importance of prey diameter for gape-limited predators such as snakes. Crotalus lutosus displayed ontogenetic, sexual, and seasonal variations in diet. Smaller rattlesnakes fed predominantly on lizards, whereas larger individuals mostly fed on mammals. Females fed on lizards more often than males. The proportion of mammals in the diet was highest during the summer, a temporal variation that may be related to behavioral shifts in the diel activity and prey selectivity of C. lutosus, and (or) to differential abundance of rodents between seasons. Great Basin Rattlesnakes also displayed geographic variation in feeding habits, with snakes from the Great Basin Desert eating a higher proportion of lizards than serpents from the more northern Columbia Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.