Abstract

Estuarine marine-dependent species, such as Rhabdosargus holubi, depend greatly on structured sheltered environments and important feeding areas provided by estuaries. In this study, we investigate the ecological feeding niches of the estuarine marine-dependent sparid, R. holubi, by using conventional stomach contents and stable isotope methods (δ13C and δ15N signatures). The study has been carried out in five temperate estuaries in order to understand how fish feed in multiple intertidal vegetated habitats. These habitats included the submerged seagrass, Zostera capensis, and both previously unexplored small intertidal cord grass, Spartina maritima, and the common reed, Phragmites australis. The diet varied amongst habitats, estuaries and fish sizes and data consistently confirmed their omnivorous diet relating to ontogenetic niche shifts. Stomach contents revealed the importance of benthic prey within both the S. maritima and P. australis habitats in the absence of large intertidal vegetation, available during low tides. Similarly, isotopic mixing models showed that R. holubi from these habitats have a greater isotopic niche compared to the Z. capensis habitat, due to their limited availability during the falling tide, suggesting migration between available habitats. Stable isotopes confirmed that R. holubi actively feeds on the epiphytic algae (especially diatoms) covering the leaves and stalks of plant matter, as supported by Bayesian mixing models. These findings add to the current knowledge regarding habitat partitioning in multiple aquatic vegetation types critical to fish ecology and the effective management and conservation of estuaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call