Abstract

The fish community of Lake Constance, a large, deep, oligotrophic lake has undergone drastic changes in recent years, with the sudden rise to dominance of invasive three-spined stickleback (Gasterosteus aculeatus) in the pelagic zone, a rather atypical habitat for this species in Central Europe. The core objective of this study was to compare the feeding ecology of stickleback and young Eurasian perch (Perca fluviatilis) in this unique situation to identify reasons for this unexpected dominance, a possible food niche and feeding time overlap, and to discuss consequences for the reshaped pelagic fish community. The diel feeding patterns and prey compositions of pelagic sticklebacks and juvenile (0+) perch sampled in October 2018 and March 2019 were studied analyzing stomach contents. The diets of both species mostly comprised zooplankton, with copepods appearing in the greatest numbers. Benthic and airborne insects were consumed occasionally, mostly by sticklebacks. Both species exhibited peaks of feeding activity early in the morning, afternoon and dusk, and in both species, stomachs were fullest at dusk. Stickleback stomachs contained about 20% more prey at night than perch, and mean estimated nocturnal stomach fullness values were almost 50% greater. Night feeding in sticklebacks was confirmed by digestive states, pointing to a possible competitive advantage over perch. Dietary composition varied over a 24-h cycle and the pattern of consumption of different prey varied between the species. Perch consumed more comparatively small cladocerans (Bosmina spp.), while larger Daphnia appeared more often in stickleback stomachs. In both species, seasonal variation in diet mirrored food availability, indicating some degree of opportunism. A Morisita-Horn index value of 0.95 confirmed dietary niche overlap between species, suggesting the large population of sticklebacks may exert a competitive effect on juvenile perch when resources are limited. Both the longer feeding periods and greater intake of nutritive high quality prey like daphnids can contribute to the rapid success of stickleback in dominating the pelagic zone of Lake Constance.

Highlights

  • The three-spined stickleback (Gasterosteus aculeatus L. 1758) is a common fish species inhabiting both lotic and lentic freshwater ecosystems, as well as brackish and marine habitats throughout the northern hemisphere (Paepke, 1996; Dußling et al, 2018)

  • The bulk of the samples was collected over a period of several days and nights in autumn 2018, with an additional night trawl and day of gillnet fishing conducted in spring in March 2019 to gain insight into seasonal feeding differences

  • Plerocercoids of the tapeworm Schistocephalus solidus were found in 28 sticklebacks sampled in autumn 2018 (13.8% prevalence) and in two sampled in spring 2019 (2.6% prevalence)

Read more

Summary

Introduction

The three-spined stickleback (Gasterosteus aculeatus L. 1758) is a common fish species inhabiting both lotic and lentic freshwater ecosystems, as well as brackish and marine habitats throughout the northern hemisphere (Paepke, 1996; Dußling et al, 2018). Since 2012/13 the species has appeared in very large numbers in the pelagic zone of Upper Lake Constance (Rösch et al, 2018; Eckmann and Engesser, 2019), and in 2014 it comprised more than 95% of pelagic fish abundance and made up about 28% of total fish biomass (Alexander et al, 2016). The feeding ecology of the three-spined stickleback has been well-documented in a number of different habitats and localities, including small, and medium-sized lakes in Canada Manzer (1976) and Great Britain (Allen and Wootton, 1984; Wooton, 2012), small brackish or saltwater coastal lagoons Sánchez-Gonzáles et al (2001) and the marine environment of the Baltic Sea (Peltonen et al, 2004; Bergström et al, 2015). Almost no information has been published about sticklebacks feeding in the pelagic waters of large, deep oligotrophic lakes, which were not known as suitable habitats for the species so far

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call