Abstract
Small pelagic fishes represent a critical link between zooplankton and large predators. Yet, the taxonomic resolution of the diets of these important fishes is often limited, especially in the Northwest Atlantic. We examined the diets, along with stable isotope signatures, of five dominant small pelagic species of the northeast US continental shelf ecosystem (Atlantic mackerel Scomber scombrus, Atlantic herring Clupea harengus, alewife Alosa pseudoharengus, blueback herring Alosa aestivalis, and Atlantic butterfish Peprilus triacanthus). Diet analyses revealed strong seasonal differences in most species. Small pelagic fishes predominantly consumed Calanus copepods, small copepod genera (Pseudocalanus/Paracalanus/Clausocalanus), and Centropages copepods in the spring, with appendicularians also important by number for most species. Krill, primarily Meganyctiphanes norvegica, and hyperiid amphipods of the genera Hyperia and Parathemisto were common in the stomach contents of four of the five species in the fall, with hyperiids common in the stomach contents of butterfish in both seasons and krill common in the stomach contents of alewife in both seasons. Depth and region were also found to be sources of variability in the diets of Atlantic mackerel, Atlantic herring, and alewife (region but not depth) with krill being more often in the diet of alewife in more northerly locations, primarily the Gulf of Maine. Stable isotope data corroborate the seasonal differences in diet but overlap of isotopic niche space contrasts that of dietary overlap, highlighting the differences in the two methods. Overall, the seasonal variability and consumer-specific diets of small pelagic fishes are important for understanding how changes in the zooplankton community could influence higher trophic levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.