Abstract

We here report a study characterizing the potential for edible insects to act as a prebiotic by altering the bacterial composition of the human fecal microbiome, using batch cultures inoculated with fecal adult human donors. Black field cricket nymphs, grass grub larvae, and wax moth larvae were subjected to an in vitro digestion to simulate the oral, gastric, and small intestinal stages of digestion. The digested material was then dialyzed to remove small molecules such as amino acids and free sugars to simulate removal of nutrients through upper gastrointestinal tract digestion. The retentate, representing the digestion resistant constituents, was then fermented in fecal batch cultures for 4, 7, and 15 h to represent rapid and longer fermentation times. Batch cultures without any added substrates were also set up to act as controls. Additionally, phosphate-buffered saline was used as a no-protein control and milk powder as “standard” protein control. At the end of the incubation period, the bacterial pellets were collected for microbiome analysis by 16S rRNA gene amplicon sequencing. Analysis of fecal cultures showed striking differences in community composition. Each substrate led to significant differences across a wide range of taxa compared to each other and PBS controls. Among the differences observed, digested grass grub larvae increased proportions of Faecalibacterium and the Prevotella 2 group. Black field crickets increased the prevalence of the Escherichia–Shigella group, Dialister genus, and a group of unclassified Lachnospiraceae. Wax moth larvae promoted the expansion of the same group of unclassified Lachnospiraceae and the Escherichia/Shigella group. The increased Faecalibacterium observed in the cultures with grass grub larvae represents a noteworthy finding as this bacterium is widely thought to be beneficial in nature, with demonstrated anti-inflammatory properties and associations with gut health. We conclude that insects can differentially modulate the microbiome composition in batch cultures inoculated with adult fecal material after simulated in vitro digestion. Although the physiological impact in vivo remains to be determined, this study provides sound scientific evidence that investigating the potential for consuming insects for gut health is warranted.

Highlights

  • The benefits of insect consumption are well documented in the literature (Patel et al, 2019)

  • The significance of the observed separation between groups was confirmed by two-factor PERMANOVA, which showed a significant effect of substrate (P < 0.001, R2 = 0.76, F = 139.66), time (P < 0.001, R2 = 0.14, F = 106.12), and a significant interaction between substrate and time (P < 0.001, R2 = 0.05, F = 9.13)

  • Our results clearly show that different insects have the potential to modify the human gut microbiome, at least in vitro

Read more

Summary

Introduction

The benefits of insect consumption are well documented in the literature (Patel et al, 2019). Insects are a more sustainable and efficient food source, requiring minimum water and space (van Huis et al, 2013; Deroy et al, 2015). The consumption of insects for food is a traditional practice in many human societies, especially in Asia and Africa, and common in low-income groups in these countries. Insects are composed of 30–80% protein on a dry matter basis (Rumpold and Schlüter, 2013; Patel et al, 2019) and are far more efficient in converting feed to bodyweight than traditional mammalian livestock (van Huis and Oonincx, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call