Abstract

The lateral septum (LS), a brain region typically associated with behaviors involving reward, anxiety-like behavior, learning, and memory, has recently received increased interest due to its potential role in eating behavior. Our current results showed that morphine (5 μg) microinjected into the LS produced a stable feeding response. Specifically, across five days of repeated injections, there was no increase or sensitization effect, nor a decrease in feeding or tolerance. Additionally, we found that pretreatment with the broad-spectrum opioid receptor antagonist naloxone blocked morphine-elicited feeding, further supporting a role for LS opioid receptors in the activation of feeding behaviors. We had previously found that the GABAA receptor agonist muscimol produces a similar increase in feeding when injected into the LS. Given the involvement of the LS in multiple behaviors, we next evaluated whether other behaviors might be co-occurring with feeding in response to opioid or GABAA receptor agonist injection into the LS. We assessed eating, drinking, grooming, sleeping, activity levels and resting behavior for 3 h after injection of aCSF, DAMGO, morphine, or muscimol. We found that morphine and muscimol both decreased the latency to eat, and all drugs tested increased food intake. The feeding occurred within 30 min of muscimol injection but was delayed after opioid injections. The absence of increases in other goal-oriented behavior like drinking or grooming or behavioral hyperactivity supports a primary effect of muscimol and the opioids on LS mechanisms of feeding control. Significance statementThe LS is interesting because of its role in a wide range of behaviors including defensive behaviors, social behaviors, learning, memory, and motivation. Although the LS was discovered to have a role in feeding stimulation over 30 years ago, only recently has major progress begun to reveal the underlying mechanisms. The present paper contributes by suggesting that LS GABAA and μ-opioid receptors elicit eating by inhibiting LS neurons that themselves inhibit eating. Importantly, this work informs lateral septal research which may shed light on disordered eating included binge eating and anorexia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call