Abstract

Convergent margin volcanism is ultimately fed by magmas generated in the mantle, but the connection between the mantle and the eruption at the surface is typically obscured by cooling, crystallization and magma mixing within the crust. Geophysical techniques are also not very effective in the lower and middle crust, where seismic events are rare and resolution is generally poor. It has thus been unclear how fast mantle-derived magmas transit the crust and recharge crustal magma chambers. Here we use diffusion modelling of nickel zonation profiles in primitive olivines from diverse primary melts to show how mantle recharge may occur on timescales as short as eruptions themselves. In Irazú volcano in Costa Rica, magmas apparently ascend from their source region in the mantle through crust about 35 kilometres thick in just months to years, recharging hybrid basaltic andesites over the course of the eruption. These results show that large stratovolcanoes with shallow magma chambers may still preserve the deep record of their mantle origin in olivine crystals. This approach--documenting magma ascent timescales from the mantle beneath a convergent margin stratovolcano--can be applied to other eruptions that record magma mixing with recharge melts. Signs of volcanic unrest are typically monitored at the surface or upper crust; new efforts should look deeper, tracking magma movement from the base of the crust to the surface in the months to years before eruptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call