Abstract

BackgroundWe aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge. Eighteen mid-lactation multiparous Holstein cows (n = 9/group) were fed the control diet (CON) or CON supplemented with 19 g/d NTK for 45 d (phase 1, P1) and then infected in the right rear quarter with 2500 CFU of Streptococcus uberis (phase 2, P2). After 36-h, mammary gland and liver biopsies were collected and antibiotic treatment started until the end of P2 (9 d post challenge). Cows were then followed until day 75 (phase 3, P3). Milk yield (MY) and dry matter intake (DMI) were recorded daily. Milk samples for somatic cell score were collected, and rectal and udder temperature, heart and respiration rate were recorded during the challenge period (P2) together with blood samples for metabolite and immune function analyses. Data were analyzed by phase using the PROC MIXED procedure in SAS. Biopsies were used for transcriptomic analysis via RNA-sequencing, followed by pathway analysis.ResultsDMI and MY were not affected by diet in P1, but an interaction with time was recorded in P2 indicating a better recovery from the challenge in NTK compared with CON. NTK reduced rectal temperature, somatic cell score, and temperature of the infected quarter during the challenge. Transcriptome data supported these findings, as NTK supplementation upregulated mammary genes related to immune cell antibacterial function (e.g., CATHL4, NOS2), epithelial tissue protection (e.g. IL17C), and anti-inflammatory activity (e.g., ATF3, BAG3, IER3, G-CSF, GRO1, ZFAND2A). Pathway analysis indicated upregulation of tumor necrosis factor α, heat shock protein response, and p21 related pathways in the response to mastitis in NTK cows. Other pathways for detoxification and cytoprotection functions along with the tight junction pathway were also upregulated in NTK-fed cows.ConclusionsOverall, results highlighted molecular networks involved in the protective effect of NTK prophylactic supplementation on udder health during a subclinical mastitic event.

Highlights

  • We aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge

  • In addition to antioxidants and vitamins found in Saccharomyces cerevisiae fermentation product (SCFP), other bioactive compounds including fermentation end-products, β-glucans, and other components of the yeast cell can modulate the immune response in humans as well as animals by priming the innate and adaptive immune response through activation of immune cells [16, 17]

  • An interaction of treatment and time was observed for Body weight (BW) (P(TRT×Time) = 0.02), but no statistical differences between treatment groups were detected at any time point

Read more

Summary

Introduction

We aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge. Fermentation products derived from Saccharomyces cerevisiae (SCFP) were reported to increase leukocyte function both in vitro and in vivo [9, 10], and generated beneficial health effects in other physiological scenarios involving immunological challenges [11,12,13,14]. When their efficacy against mastitis was tested in 25 large-scale commercial herds throughout the United States, SCFP reduced incidence of mastitis, and lowered their linear score when present [15]. In addition to antioxidants and vitamins found in SCFP, other bioactive compounds including fermentation end-products, β-glucans, and other components of the yeast cell can modulate the immune response in humans as well as animals by priming the innate and adaptive immune response through activation of immune cells [16, 17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call