Abstract

This article deals with the development and implementation of a novel feedforward super-twisting sliding mode controller for robotic manipulators. A full stability analysis based on a Lyapunov candidate is established showing a local asymptotic finite-time convergence of the proposed controller in the presence of upper bounded disturbances. Its robustness toward parametric uncertainties and system disturbances, thanks to the super-twisting approach, is pointed out. In addition, the feedforward dynamic term of the proposed controller that can compensate for the model nonlinearities is not sensitive to measurement noise. Real-time experiments have been conducted on two parallel manipulators: a 5-DOF SPIDER4 PKM and a 3-DOF Delta PKM. The effectiveness of the proposed controller is validated in different scenarios, including the nominal case and robustness toward parametric variations (payload) and speed changes

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.