Abstract

Sigmoidal feedforward artificial neural networks (FFANNs) have been established to be universal approximators of continuous functions. The universal approximation results are summarized to identify the function sets represented by the sigmoidal FFANNs with the universal approximation properties. The equicontinuous properties of the identified sets is analyzed. The equicontinuous property is related to the fault tolerance of the sigmoidal FFANNs. The generally used arbitrary weight sigmoidal FFANNs are shown to be nonequicontinuous sets. A class of bounded weight sigmoidal FFANNs is established to be equicontinuous. The fault-tolerance behavior of the networks is analyzed and error bounds for the induced errors established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.