Abstract
The architecture of gene regulatory networks determines the specificity and fidelity of developmental outcomes. We report that the core regulatory circuitry for endoderm development in Caenorhabditis elegans operates through a transcriptional cascade consisting of six sequentially expressed GATA-type factors that act in a recursive series of interlocked feedforward modules. This structure results in sequential redundancy, in which removal of a single factor or multiple alternate factors in the cascade leads to a mild or no effect on gut development, whereas elimination of any two sequential factors invariably causes a strong phenotype. The phenotypic strength is successfully predicted with a computational model based on the timing and levels of transcriptional states. We found that one factor in the middle of the cascade, END-1, which straddles the distinct events of specification and differentiation, functions in both processes. Finally, we reveal roles for key GATA factors in establishing spatial regulatory state domains by repressing other fates, thereby defining boundaries in the digestive tract. Our findings provide a paradigm that could account for the genetic redundancy observed in many developmental regulatory systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.