Abstract

The multichannel implementation of the auxiliary-filter-based virtual-sensing (AF-VS) technique for active noise control applications is revisited and realized in the paper. Frequency-domain analysis based on random primary noise proves that the multichannel virtual-sensing active noise control (MVANC) technique can achieve optimal control at the desired virtual locations even if the signals at the physical and virtual microphones are not causally related. Further analysis on a number of sensor-actuator configurations shows that the MVANC technique achieves optimal control at the desired locations as long as the number of secondary sources does not exceed that of the physical error microphones. Furthermore, the simulations with measured transfer functions and real-time experiments conducted on a four-channel system validate the frequency domain analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.