Abstract
Sensory neurons are modulated by context. For example, in mouse primary visual cortex (V1), neuronal responses to the preferred orientation are modulated by the presence of superimposed orientations ("plaids"). The effects of this modulation are diverse; some neurons are suppressed, while others have larger responses to a plaid than its components. We investigated whether this diversity could be explained by a unified circuit mechanism. We report that this masking is maintained during suppression of cortical activity, arguing against cortical mechanisms. Instead, the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons are uniformly suppressed by plaids, whereas the effects in weakly selective neurons depend on the spatial configuration of the stimulus, transitioning systematically between suppression and facilitation. Thus, the diverse responses emerge as a consequence of the spatial structure of feedforward inputs, with no need to invoke cortical interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.