Abstract

This paper deals with the flux-weakening control of surface-mounted permanent-magnet synchronous motors, taking into account the influence of the resistive voltage drop in the stator windings, whose effect is usually neglected in similar studies. First, the motor equations exploiting the optimal torque-speed limits in the flux-weakening region are evaluated and discussed. Then, the influence of the resistive voltage drop is pointed out, highlighting its effect on the setup of the flux-weakening strategy. Hence, a simplified approach to flux-weakening motor control is presented, useful for the practical implementation in microcontrolled drives. Finally, experimental results are shown, using a position tracking application as a test case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.