Abstract

This paper reviews digital tracking control algorithms for motion control applications. In tracking control, the control objective is to steer the control object along the time-varying desired output. Two design approaches are presented for the case where the desired signal is known in advance, i.e. previewable. One approach is based on the mathematical inverse of a closed-loop system consisting of a controlled plant and a feedback controller. If the mathematical inverse is asymptotically stable, i.e. the closed-loop system does not possess zeros outside the unit circle (unstable zeros), it is an ideal feedforward controller for achieving perfect tracking under the preview assumption. For closed-loop systems with unstable zeros, a cancellation technique for the phase shift induced by unstable zeros is introduced. Another approach is based on linear quadratic optimal control and is known as finite optimal preview control. In this approach, the feedback controller and feedforward controller are determined s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call