Abstract

This paper presents a feed-forward decoupling control method to enhance the stability of a photovoltaic (PV) inverter connected to a weak grid. As the grid weakens, the point of common coupling (PCC) voltage becomes sensitive to the active power. This increases the coupling effects between control loops, Phase-Locked Loop (PLL) and grid dynamics, which deteriorate system stability. Therefore, in this paper, a decoupling control method is proposed in which the reference active current obtained by regulating the DC-link voltage to its reference value is feed-forwarded to modulate the reactive current reference generated by regulating the PCC voltage to its predefined value. As result, the robust performance of the PV inverter connected to a weak grid has been yielded, where the inverter stability is maintained for both wider PLL bandwidth and high grid impedance. Based on open-loop bode plot and closed-loop eigenvalues of the DC-link voltage control (DVC) loop, a stability analysis of the proposed control method and the conventional vector control method has been performed. Then, the proposed method is verified through simulation results obtained by PLECS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call