Abstract

A new feedforward control circuit suitable for applications in the dc-dc pulsewidth modulated (PWM) boost converter operated in the continuous conduction mode (CCM) is proposed. Its principle of operation is described, analyzed for steady state, and experimentally verified. The peak value of the sawtooth voltage at the noninverting input of a PWM modulator is held constant and the voltage at the inverting input of the PWM modulator varies in proportion to the converter dc input voltage. As a result, the complement of the on-duty cycle (1-D) is proportional to the dc converter input voltage, yielding the converter output voltage theoretically independent of the converter input voltage. The circuit is very simple and significantly improves line regulation of the output voltage. The measured open-loop line regulation at fixed loads was less than 5% for the converter dc input voltage change by 400%. The load regulation was also good even without a negative feedback loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.