Abstract

Advanced feedforward control methods enable mechatronic systems to perform varying motion tasks with extreme accuracy and throughput. The aim of this paper is to develop a data-driven feedforward controller that addresses input nonlinearities, which are common in typical applications such as semiconductor back-end equipment. The developed method consists of parametric inverse-model feedforward that is optimized for tracking error reduction by exploiting ideas from iterative learning control. Results on a simulated set-up indicate improved performance over existing identification methods for systems with nonlinearities at the input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.