Abstract
The rubbing faults caused by dynamic and static components in large rotatory machine are dangerous in manufacture process. This paper applies a feedforward chaotic neural network (FCNN) to recognize acoustic emission (AE) source in rotor rubbing and diagnose the rotor operational condition. This method adds the dynamic chaotic neurons based on logistic mapping into the multilayer perceptron (MLP) model to avoid the network falling into a local minimum, the delayed and feedback structure for maximum efficiency of recognition performance. The AE data was rotor rubbing process sampled from the test rig of rotatory machine, classification by fault degree. The experimental results indicate that the recognition rate is superior to the traditional BP network models. It is an effective method to recognize the rubbing faults for the machine normal operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.