Abstract

A feedforward control technique is presented to steer a harmonically driven, non-linear system between attractors in the frequency-amplitude parameter plane of the excitation. The basis of the technique is the temporary addition of a second harmonic component to the driving. To illustrate this approach, it is applied to the Keller-Miksis equation describing the radial dynamics of a single spherical gas bubble placed in an infinite domain of liquid. This model is a second-order, non-linear ordinary differential equation, a non-linear oscillator. With a proper selection of the frequency ratio of the temporary dual-frequency driving and with the appropriate tuning of the excitation amplitudes, the trajectory of the system can be smoothly transformed between specific attractors; for instance, between period-3 and period-5 orbits. The transformation possibilities are discussed and summarized for attractors originating from the subharmonic resonances and the equilibrium state (absence of external driving) of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call