Abstract

In this work, the application of a feed-forward artificial neural network (FFANN) in predicting the degree of polymerization (DP) and loss of life (LOL) in oil-submerged transformers by using the solid insulation evaluation method is presented. The solid insulation evaluation method is a reliable technique to assess and predict the DP and LOL as it furnishes bountiful information in examining the transformer condition. Herein, two FFANN models are proposed. The first model is based on predicting the DP when only the 2-Furaldehyde (2FAL) concentration measured from oil samples is available for new and existing transformers. The second FFANN model proposed is based on predicting the transformer LOL when the 2FAL and DP are available to the utility owner, typically for the transformer operating at a site where un-tanking the unit is a daunting and unfeasible task. The development encompasses constructing numerous FFANN designs and picking networks with superlative performance. The training and testing procedures databank is based on the dataset of the 2FAL and DP from a fleet of transformers and measured from laboratory analysis. The correlation coefficient of 0.964 was ascertained when the DP was predicted using the 2FAL measured in oil. In the FFANN model, a correlation coefficient of 0.999 against the practical data where one can make a reliable prediction of transformer LOL concerning 2FAL was generated and the amount of DP present produced. This model can be used to predict the DP and LOL of new and existing transformers at the manufacturer’s premises and operating in the field, respectively. To the knowledge of the authors, no research work has been published addressing the methods proposed in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.