Abstract

In this paper, we provide a systematic approach for the design of stabilizing feedback controllers for nonlinear control systems using the Koopman operator framework. The Koopman operator approach provides a linear representation for a nonlinear dynamical system and a bilinear representation for a nonlinear control system. The problem of feedback stabilization of a nonlinear control system is then transformed to the stabilization of a bilinear control system. We propose a control Lyapunov function (CLF)-based approach for the design of stabilizing feedback controllers for the bilinear system. The search for finding a CLF for the bilinear control system is formulated as a convex optimization problem. This leads to a schematic procedure for designing CLF-based stabilizing feedback controllers for the bilinear system and hence the original nonlinear system. Another advantage of the proposed controller design approach outlined in this paper is that it does not require explicit knowledge of system dynamics. In particular, the bilinear representation of a nonlinear control system in the Koopman eigenfunction space can be obtained from time-series data. Simulation results are presented to verify the main results on the design of stabilizing feedback controllers and the data-driven aspect of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call