Abstract
For an N-dimensional quantum system under the influence of continuous measurement, this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator, respectively. In the switching control strategy, we divide the state space into two parts: a set containing a target state, and its complementary set. By analyzing the stability of the stochastic system model under consideration, we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state. Further, for the case of a non-degenerate measurement operator, we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory; while for the case of a degenerate measurement operator, the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians. The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved. The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.