Abstract

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are highly conserved subcellular structures. Despite their importance in Ca(2+) signaling and lipid trafficking, the molecular mechanisms underlying the regulation and functions of ER-PM junctions remain unclear. By developing a genetically encoded marker that selectively monitors ER-PM junctions, we found that the connection between ER and PM was dynamically regulated by Ca(2+) signaling. Elevation of cytosolic Ca(2+) triggered translocation of E-Syt1 to ER-PM junctions to enhance ER-to-PM connection. This subsequently facilitated the recruitment of Nir2, a phosphatidylinositol transfer protein (PITP), to ER-PM junctions following receptor stimulation. Nir2 promoted the replenishment of PM phosphatidylinositol 4,5-bisphosphate (PIP2) after receptor-induced hydrolysis via its PITP activity. Disruption of the enhanced ER-to-PM connection resulted in reduced PM PIP2 replenishment anddefective Ca(2+) signaling. Altogether, our results suggest a feedback mechanism that replenishes PM PIP2 during receptor-induced Ca(2+) signaling viathe Ca(2+) effector E-Syt1 and the PITP Nir2 at ER-PM junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call