Abstract

In this paper, a feedback model predictive control method is presented to tackle control problems with constrained multivariables for uncertain discrete-time nonlinear Markovian jump systems. An uncertain Markovian jump fuzzy system (MJFS) is obtained by employing the Takagi-Sugeno (T-S) fuzzy model to represent a discrete-time nonlinear system with norm bounded uncertainties and Markovain jump parameters. To achieve more generality, the transition probabilities of the Markov chain are assumed to be partly unknown and partly accessible. The predictive formulation adopts an on-line optimization paradigm that utilizes the closed-loop state feedback controller and is solved using the standard semi-definite programming (SDP). To reduce the on-line computational burden, a mode independent control move is calculated at every sampling time based on a stochastic fuzzy Lyapunov function (FLF) and a parallel distributed compensation (PDC) scheme. The robust mean square stability, performance minimization and constraint satisfaction properties are guaranteed under the control move for all admissible uncertainties. A numerical example is given to show the efficiency of the developed approach. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.