Abstract

In nature and human society, successive lag synchronization (SLS) is an important synchronization phenomenon. Compared with other synchronization patterns, the control theory of SLS is very lacking. To this end, we first introduce a complex dynamical network model with distributed delayed couplings, and design both the linear feedback pinning control and adaptive feedback pinning control to push SLS to the desired trajectories. Second, we obtain a series of sufficient conditions to achieve SLS to a desired trajectory with global stability. What is more, the control flow of SLS is given to show how to pick the pinned nodes accurately and set the feedback gains as well. Finally, since time-varying delay is common, we extend the constant time delay in SLS to be time varying. We find that the proposed pinning control schemes are still feasible if the coupling terms are appropriately adjusted. The theoretical results are verified on a neural network and the coupled Chua's circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call