Abstract
AbstractIn this paper, the feedback passivity‐based control of nonlinear discrete time‐delay systems for variable geometry truss manipulators is investigated. To determine an appropriate communication channel in the sense of feedback passivation, we first model the dynamics of the variable geometry truss manipulator as a generalized discrete nonlinear system with time‐delay. Then we further prove that when the infinite norm of estimated error is bounded, as long as there is a controller enables the closed‐loop system to be input‐strictly passive, there must be a deterministic equivalent controller to ensure that the system is stochastically quasi passive. After that, on the basis of the conclusion obtained, a more conclusive corollary is addressed for linear plants. Though passivity is a stricter condition than stability, feedback passivation does not impose more restrictions on estimate errors, and therefore does not require more communication channel information than mean square stability. Finally, we simplify the variable geometry truss dynamics to a linear plant to simulate to verify the validity of our method, and also compared the experimental results with the methods in the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.